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Abstract
Double pane windows are common objects which can enrich physics teaching
at undergraduate level at least in five different fields. First, having sealed inner
spaces filled with gas, one can discuss gas law problems upon changes of
pressure and/or temperature. Second, when discussing temperature differences
between inside and outside, one needs to take into account the associated heat
transfer mechanisms which define the pane temperatures, enclosing the gas.
Third, using elastic properties of the glass, one may treat deformations of the
window panes upon those changes or additional manually applied external
pressure. Fourth, the reflective properties of glass combined with the pane
deformations result in concave or convex mirrors, which when illuminated by
the Sun, may lead to focal points on projection areas such as facing houses.
Fifth, such areas receive an increased irradiance which leads to associated
thermal effects. Starting from the most obvious daily life phenomenon, the
fascinating caustics of reflected sunlight on streets or walls, all of these double
pane window phenomena are investigated experimentally as well as theore-
tically.

S Online supplementary data available from stacks.iop.org/EJP/35/
045023/mmedia
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1. Introduction

Windows in houses permit looking through the building envelope, however, at least for single
pane windows, this is also associated with increased thermal losses compared to the walls. In
order to reduce these losses and prevent condensation on the surfaces, double pane windows
have been developed a long time ago and patents have been issued already in the 1930s (e.g.
[1]). Nowadays, double pane windows (also called double glazings) are standard. They
usually consist of glass sheets having around 3 to 5 mm thickness each and a gap between the
two panes of between 10 and 20 mm thickness. The air tight space between the two panes is
usually filled with either dry air or noble gases of lower thermal conductivities such as Ar, Kr,
or Xe and pressures around ambient pressure. Mostly Ar is used, since Kr or Xe are
very expensive.

Double pane windows have been extensively studied in the past and we only mention a
few studies on thermal properties such as heat transfer, optical properties of coatings for use
in special environments or breakage upon thermal stress (e.g. [2, 3] and thesis overview [4]).
In houses, such windows are usually considered to be of planar geometry, they do, however,
also exist in curved geometries, e.g. in the form of curved air plane windows (e.g. [5]) such
that the outer skin of the plane is smooth.

Most optical studies of ‘planar’ double pane windows have focused on the optical
transmission and reflection with regard to heat management. Secondary effects of the
reflected light such as caustics or induced thermal effects have only been reported for large
glass fronts [6] and just a few German studies exist reporting observations of optical effects
from individual double pane windows [7, 8].

They are due to increased use of double pane windows in recent decades which have led
to an increase of observations of associated optical effects, in particular everyday life
sightings of reflection images of strange and varying geometrical forms. These optical phe-
nomena are on the one hand interesting for physics teaching regarding the underlying optical
principles of reflected image formation. As everyday life experience, they fit nicely into
curricula dealing with optics of curved mirrors. On the other hand, these optical reflections
may also pose problems due to the respective thermal effects: the increase of irradiance in
focal areas of the images was suspected to cause damage to thermal insulation of neigh-
bouring houses (end of video clip [9]).

The present paper investigates optical reflection effects due to deviations from planar
geometry of individual double pane windows in houses at undergraduate level. It first
describes everyday life observations of the phenomena and how they vary with changing
conditions, second, simple model experiments for easy demonstration of the effect in a
classroom are presented, third a theoretical model is described to account for the observed
features, fourth the occurrence of the phenomenon is related to external meteorological
conditions, and fifth we discuss the measured thermal effects within the focal areas of
the caustics.

2. The phenomenon

Figure 1 depicts two (of many) typical sights of the optical phenomena due to reflection from
double pane windows. Features like these may often be observed whenever sunlight is
reflected from windows and the reflected light is projected on nearby walls, e.g. of buildings
on the opposite side of the street. The best conditions to observe the phenomena are a low
shining sun and a street running perpendicularly to the direction of the sunlight, i.e. near
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normal incidence of light onto the window. When the Sun is too high the light features may
eventually be found on the street or on the top of parking cars. For other geometries, the
shapes from figure 1 can become quite distorted. Overall, for a given location, the phe-
nomenon can be observed for a couple of hours each day for a period of several weeks within
a given time of the year, depending on the geometry which is determined by sun path relative
to building orientation.

Figure 1(a) shows a typical shape of the phenomenon, resembling a kind of light cross
surrounded by a circle or rhombus of light. Such shapes are usually called caustics. Caustics
refer to the enveloping curve of all light rays which were reflected by a curved window and
subsequently projected onto the house wall (quite often the term caustic is used in a more
general sense to describe respective focal areas when the reflected or transmitted light is
projected onto a surface).

Very often, window reflections from the same house are quite similar to each other in
shape (for different features, see below). In contrast the windows of adjacent houses can
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Figure 1. Two typical reflection caustics observed as projections on the walls of houses
on the opposite side of the street. The geometry of the features can vary from crosses
surrounded by rings or rhombuses (a) to more or less circular or elliptical shapes (b)
and many more.

Figure 2. Two snapshots from a video of a moving caustic due to rotation of a window
around its vertical axis.



produce different reflection shapes (figure 1(b)). A rather strange observation is the fact that
the sharpness of the crosses due to the same window may change within a few days leading to
considerable deviations from the ideal cross shape. Also, if the projection wall distance
changes, it may well be that the same window results in crosses (figure 1(a)) for nearby
projection and round spots (figure 1(b)) for more distant projection.

Usually, the windows causing the phenomenon can be easily identified, e.g. by trying to
look towards the reflecting windows. Alternatively as shown in figure 2, the reflecting
windows are sometimes accessible. In figure 2, the window was opened and rotated around its
vertical axis while recording the photos (see online supplementary data available from stacks.
iop.org/EJP/35/045023/mmedia). From close-by the windows look perfectly flat, i.e. if the
phenomena are due to curvatures, these must be very small.

Typical distances between windows and the projected caustics are between 10 m
(figure 1) to more than 30 m (figure 2), depending on the geometry under study.

3. Simple explanation based on observations

Once it is obvious that the observed caustics result from reflection of light from windows one
may either directly study the windows or—if not accessible—analyze the phenomena theo-
retically and/or in laboratory experiments to gain further insight in their origin. Single pane
windows are rather flat and do usually not produce these caustics. Mostly double pane
windows are involved.

3.1. Change of planar window panes into curved mirrors

As mentioned above, double pane windows consist of two glass panes which are separated by
a volume filled with inert gas. Since the inner volume is air tight, the two glass panes are only
parallel (i.e. the inner volume stays constant) if the ratio of outside pressure and temperature
stays constant with respect to the manufacturing conditions of the window. Whenever this
ratio changes, the inner pressure and hence, also the volume will change according to the

Eur. J. Phys. 35 (2014) 045023 M Vollmer et al

4

Figure 3. Scheme of a double pane window under equilibrium condition with planar
surfaces (left) and if deformed (here concave shape) due to external pressure and/or
temperature changes (right). The deformation can lead to focusing of light (indicated by
arrows) from the front pane and defocussing from the back one (the analog situation
with convex shape is also possible).

http://stacks.iop.org/EJP/35/045023/mmedia
http://stacks.iop.org/EJP/35/045023/mmedia


elasticity of the glass panes. This can lead either to convex or concave surfaces of the
window, i.e. the initially planar window can change into a non-planar geometry (see figure 3).

If sunlight is incident on such a window pane with concave shape, the reflected light from
the front surface of the concavely formed outside pane (figure 3) is focused. At the same time
the convexly shaped inside pane leads to diverging light. Deformation of window panes can
often be directly detected, when observing reflection images of rectangular objects. Figure 4
depicts an example, where deformed windows reflect other windows from houses on the
opposite side of the street as well as a rectangular grid structure.

Since window panes are usually attached to a rectangular frame, the deformation will not
be spherical but much more complex. For example one may expect a superposition of two
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Figure 4. (a) Mirror images from rectangular structures seen in non-planar double pane
windows. (b) Enlarged view of the lower right window with the distorted image nicely
illustrating the window deformations.

Figure 5. Geometry for observing window reflections of sunlight on buildings (a) and
example of observed caustics on the wall of a neighbour building (b) (details, see text).



radii of curvature and therefore the resulting focal point image will be distorted [7] from a
single spot to a cross-like feature. As a first approximation we assume a spherical mirror. Its
radius of curvature R defines the focal length f which in turn can be used to construct images
using simple geometrical optics (see e.g. [10]). A concave spherical mirror will focus parallel
(paraxial) light in a distance of f=R/2. In our case this means that sharp focal areas are
expected whenever the image distance if close to the focal length.

In order to test the simple model of pane deformations, we did some experiments in our
university building which allows observations quite regularly. Figure 5(a) shows the geo-
metry: sun radiation is incident on a well-defined double pane window on the third floor. The
reflected light is projected onto the wall of a two story neighbouring building (figure 5(b)).
The direct distance from window to wall is around 30 m. The reflections of at least four
windows (size 1.25 m× 1.74 m) can be seen at the nearby wall each of them being distorted
differently. One of them, just observed closely by two people shows a rather sharp feature, i.e.
its radius of curvature just gives a rather pronounced sharp focal spot at the projection wall of
the building. For the other three windows, one of them also being at the third and the two
other at the fourth floor of the office building, the image distance did not fit properly to the
radius of curvature therefore the features are broader. Obviously, windows in the same
building can differ appreciably from each other!

3.2. Identifying the window

First, we did identify the windows by tilting one of them. Figure 6 shows an example and
depicts the geometry. By tilting the window by a few degrees, the caustic moved more than
1 m upward (see online supplementary data stacks.iop.org/EJP/35/045023/mmedia). The two
triangular-like structures in the image are an artefact due to reflections from the clothes of the
person, who is tilting the window.

3.3. Applying pressure to window pane

Once the window referring to a specific caustic is identified, one may change the inside
pressure conditions, by applying a force to the window (just manually pushing against the
center of one pane) (see online supplementary data stacks.iop.org/EJP/35/045023/mmedia).
Figure 7 depicts some enlarged sections of the caustics similar to the ones in figure 5(b)
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Figure 6. Moving caustic shape due to tilting of a window, i.e. rotation around a
horizontal axis ((a) and (b)) as well as geometry causing the shift (c) (the two images
are snapshots from a video) (see online supplementary data stacks.iop.org/EJP/35/
045023/mmedia). Pane area 1.25 m× 1.74 m= 2.18 m2.

http://stacks.iop.org/EJP/35/045023/mmedia
http://stacks.iop.org/EJP/35/045023/mmedia
http://stacks.iop.org/EJP/35/045023/mmedia
http://stacks.iop.org/EJP/35/045023/mmedia


before and while applying pressure. Figure 7 demonstrates that applying a force to the inside
of a double pane window changes its inside pressure and therefore the geometry of the outside
pane. The resulting deformations of that pane decrease or increase its radius of curvature, and
the originally in focus image without force changes into an out of focus projection on the wall
while applying the force. This experiment qualitatively demonstrates that it is indeed the
surface geometry of the window which is responsible for the observed features.
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Figure 7. Change of the observed caustic of a double pane window (a) by applying a force
at the inside pane (b); the geometry of figure 5 applies. Scheme of the window (c): the
radius of curvature of the opposite pane changes and hence the focal area of reflected light
from that pane at a given distance smears out. For simplicity, the right scheme depicts the
panes as thin broken (undisturbed) or solid lines and reflection from the back pane is not
shown (see online supplementary data stacks.iop.org/EJP/35/045023/mmedia).

Figure 8. Two snapshots (start and 135 min later) from a time lapse video of the
moving reflection features on the wall of a nearby building. The features change with
image distance. Recorded 28 March 2012 (see online supplementary data stacks.iop.
org/EJP/35/045023/mmedia).

http://stacks.iop.org/EJP/35/045023/mmedia
http://stacks.iop.org/EJP/35/045023/mmedia
http://stacks.iop.org/EJP/35/045023/mmedia


3.4. Changing the image distance

A second parameter which can be changed during observations can be the image distance
while the caustics move.

Figure 8 demonstrates how features change with image distance. While the reflection
spots were moving within the observed period (more than two hours, time lapse video, see
online supplementary data stacks.iop.org/EJP/35/045023/mmedia) the shape of the spots
changed. The left cross-shaped spot within the marked area of figure 8(a) was getting out of
focus for the nearer wall (figure 8(b)) while at the same time, the near circular right focal spot
obviously increased in size and changed its form into a cross-shaped feature on the nearer
wall (figure 8(b)).

These changes are again consistent with the simple model: for large image distances
(figure 8(a)), the right spot seems to be about in focus. This means that it needs to be out of
focus when decreasing the image distance by about 12.5 m as shown in figure 8(b).

4. Simple experiments in the classroom

In order to demonstrate the phenomenon in the classroom we used two slightly different
miniature models of double pane windows. Figure 9(a) depicts the simpler model for
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Figure 9. (a) Simple double pane window model allowing variation of the inside
pressure. (b) Corresponding patterns of reflected parallel light. Left in focal distance.
Middle in intermediate. Right in equilibrium.

Figure 10. Second window model (a) for quantitative measurements of plane
deformation and pressure differences with two connectors to the inside volume. One
connector is usually attached to a pressure and vacuum pump (b) while a coloured
water manometer may be attached to the other. Besides there is the readout box of the
inductive position sensor from the center of the plate (c).

http://stacks.iop.org/EJP/35/045023/mmedia


qualitative experiments made from acrylic glass (Plexiglass). The glass sheets had a thickness
of 4 mm and a size of 20 cm by 20 cm. A gap of several mm width was realized with distance
pieces of the same material when gluing the glass sheets together (acrylic glass is glued
together using solvent adhesives like in our case Acrifix 107 from Evonic industries: the
contact surfaces are etched by the solvent and then stick together by cohesive forces while the
solvent evaporates, i.e. the connection is not elastic). The inside pressure can be changed
using a syringe which is attached to a nipple connector within the gap with a hose.

If the syringe is initially in a middle position, the pressure can be increased as well as
decreased which—as a consequence—leads to non-planar deformations of the panes. Similar
to the natural observations this is detected optically by observing reflected parallel incident
light from either the Sun or a slide projector etc. Figure 9(b) depicts some experimental results
for different distances of pane from projection screen.

Figure 10 depicts the second model used for quantitative measurements of window
deformation due to pressure differences also made from acrylic glass. The sheets had a
thickness of 3.5 mm, the inner gap was 5 mm and the window had again a size of 20 cm
by 20 cm.

The inside pressure was changed with the manual pump both to larger and smaller
values. It was measured using the second connector and a water manometer. Similar optical
reflection patterns as in figure 9 were observed while changing the pressure from about 25 hPa
to equilibrium. The pattern of the latter condition resembles the more or less featureless
quadratic shape projection. The pattern does not depend a lot on the sign of the pressure
difference. Switching the sign, just means that the total window shape changes from concave
to convex or vice versa, i.e. the window surface responsible for the convergent pattern
switches from the front pane to the back pane or vice versa.

The window model also allows measurement of the sag at the center and simultaneously
the pressure difference which causes it. After evacuating the window, we observed the
gradual pressure increase and simultaneously measured the sag (see figure 10(c)) with an
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Figure 11. Sag at the center of the quadratic acryl glass plate (side length 20 cm, inner
gap at equilibrium 5 mm, individual pane thickness 3.5 mm) as a function of the water
column. Pressure can be calculated therefrom with the approximation that the 10 mm
water column resembles approximately 1 hPa (from ρ g h =Δp).



inductive position sensor. The experiment was repeated several times. Figure 11 shows eight
data points together with a straight line fit, which shows nearly perfect agreement
(R2 = 0.999 96). We observed maximum sags of around 0.5 mm at pressure differences of
25 hPa, only. The linear dependence is in agreement with theoretical predictions (see
equation (1) below).

5. Modeling of window deformation and caustic features

5.1. Theoretical bending of windows due to load and elastic properties

A theoretical modeling of optical features due to sunlight reflection from non-planar double
pane windows starts with the distortion of the window due to pressure differences between
inside and outside. The basic problem is well known in the theory of elasticity and was
already treated for double pane windows in order to explain ghost image phenomena [11]. For
rectangular windows of dimensions a and b and thickness h, one finds equation (1) for the sag
W(x,y) of a plate freely supported around its perimeter as a function of its position (x,y) (see
[11] or equations (10.11) and (10.41) in [12]). We assume that the induced stresses do not
lead to breaking of window panes as can occur during hurricanes [13].

α Δ ϕ= ⋅ ⋅ ⋅ ( )W x y
a b

h
p x y k( , ) , , . (1)

2 2

3

Here, α =
σ

π

−( )
E

192 1 2

6 is a factor containing the elastic properties of the plate material in form of

Young’s modulus of elasticity E and the Poisson ratio σ, Δp denotes the pressure difference
across the plate, i.e. here the difference between inside and outside pressure. The sign
convention is as follows: if the outside pressure is higher, i.e. Δp > 0, the panes will be bent
inwards and W> 0. In the opposite case, Δp< 0 leads to W< 0 and bending will be outwards.
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π π
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governs the variation of plate deformation as a function of position, being described as a
series expansion. Typical elastic constants for glass are Eglass≈ 70–75 GPa and
μglass≈ 0.2–0.25.

Equation (1) can be solved for any given set of window dimensions and thus allows to
compute the geometrical deformation of a window pane as a function of pressure difference.
The position dependence is contained in ϕ(x,y,k) i.e. equation (2). This can be easily eval-
uated e.g. with an Excel spreadsheet program, since the series expansion converges rapidly.
For example, using maximum odd numbers of m= 15 and n= 15, we find for the relative
deviation at maximum sag

ϕ ϕ
ϕ

∞ −
∞

< −( )m n m n

m n

( , up to ) , up to 15

( , up to )
10 . (3)5

Once the sag W(x,y) is known, the respective window tilts may be computed from the
same program. The absolute value of the tilt is found from
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For later ray tracing analysis, we use the tilts in the (x-z) and (x-y) directions ∂W/∂x and
∂W/∂y. The resulting two matrices ∂W(x,y)/∂x and ∂W(x,y)/∂y can then be used in a simple ray
tracing program to compute the reflected light distribution on a projection screen at a given
distance from the window. The quality of the result depends on the number of rays which is
defined by the spatial resolution, i.e. the size of the increments dx and dy. In our computations
for the square 1 m2 window we used 200 × 200 = 40 000 area elements. A test with
1000 × 1000 elements of 1 mm2 gave essentially the same result, due to the much longer
computation time, all other simulations were done with area elements of 5 mm side length.
For example we also treated rectangular 2 m2 windows with k= 2, using 400 × 200 = 80 000
area elements of (5 mm)2 each. In order to reproduce features from the observations we also
treated rectangular windows with k = 1.4 and 280 × 200 area elements.

Some details about ray tracing procedures are given in the appendix. We start with light
rays having normal incidence with regard to the undisturbed window surface. Due to the tilts
∂W/∂x and ∂W/∂y of an area element dx × dy of the deformed window, we can find the angle
of incidence and from the law of reflection the direction of the reflected light ray. If a
projection screen is in a given distance d from the window (d≫W(x,y)), the position of the
reflected light ray due to window position (x,y) is given by:

= −
∂

∂
x x y x d

W x y

x
a( , ) 2

( , )
(5 )refl

and

= −
∂

∂
y x y y d

W x y

y
b( , ) 2

( , )
. (5 )

refl

All computations are based on the same Excel program having three functions. First it is
used to compute ϕ(x,y) of equation (2). The program allows to vary the input parameters by
setting a prefactor which then results in the sag (equation (1)) and tilt t(x,y) (equation (4)).
Once the sag is known, one only needs the distance d of the projection screen from the
window as final parameter for solving equation (5).

5.2. Elastic deformations for quadratic and rectangular windows

As expected, maximum sag for rectangular geometry occurs at the center and contours of
equal sag are nearly circles for quadratic windows close to the center (or ellipses for rec-
tangular windows), but deform to rounded squares (rounded rectangles) when approaching
the perimeter (see figures 12, 13). As a consequence, the tilt is zero at the four corners and at
the center, large at the middle of the perimeter and shows a pronounced diagonal symmetry
(similar to figures 3, 4 in [11]).

To get a feeling for the magnitude of the sag, we give an example for the center of a
quadratic window with a= b = 1 m, h= 5 mm, E = 70 GPa, and σ = 0.20. The prefactor

α ⋅ a b h2 2 3 amounts to ≈2.19 · 10−5 m Pa−1, i.e. 2.19 mm hPa−1. At the center of the window
(x= y= a/2) the sin functions result in +1 or −1 only and the summation due to the
denominator values yields ϕ≈ 0.244. Therefore the theoretical sag at the center of a 1 m2

quadratic plate amounts to Wmax≈Δp · 0.53 mm hPa−1. The respective value for a rectangular
window of ≈2.2 m2 (a = 1.75 m, b = 1.25 m) should give rise to a maximum theoretical sag of
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around Wmax≈Δp · 1.90 mm hPa−1. Table 1 gives a summary of the maximum sag for
several windows and well defined Δp = 1 hPa.

The order of magnitude seems reasonable keeping in mind that first, the inner space of
double pane windows usually ranges around 15 mm or so and the naked eye cannot detect
strong curvatures of such windows. Realistic window values may change depending on
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Figure 12. (a) Schematic plot of contours/regions of equal deformation, i.e. sag, of a
quadratic 1 m2 window as computed theoretically (200 × 200 area elements). These are
due to the position dependent factor ϕ(x,y) (equation (2)). Close to the center, the shape
resembles circles whereas close to the perimeter, the shape is better approximated by
rounded squares. (b) Corresponding tilt according to equation (4). The colour bar refers
to both (a) and (b). (c) Three-dimensional plot of the sag of figure (a).

Figure 13. Schematic plot of contours/regions of equal deformation of a rectangular
window (a) and respective tilt (b) with aspect ratio k= 1.4 (200 × 280 area elements).
Close to the center, the deformations resemble ellipses whereas close to the perimeter,
the shape is better approximated by rounded rectangles.

Table 1. Maximum sag for windows of a given area and aspect ratio k for Δp= 1 hPa.

k = 1 k = 1.4 k= 1.5 k = 2

Area: 1 m2 0.53 mm 0.48 mm 0.45 mm 0.33 mm
Area: 2 m2 2.14 mm 1.90 mm 1.81 mm 1.33 mm



material properties. Second, we also manually applied a force of around 100 N (measured
with a balance) with a thumb on the center of a 2.2 m2 window pane of k= 1.4 while
observing typical changes of the observable caustics similar to those in nature (change from a
square-like to a cross-like feature). This point-like stress—if as first approximation interpreted
as uniform pressure across the pane—would correspond to about 50 Pa, i.e. 0.5 hPa. For the
window area of 2.2 m2, one would expect a maximum sag of around 1.15 mm for 0.5 hPa. We
also measured the manually induced deformation by attaching a solid square rod to the
window frame and measuring the distance from the rod to the center of the pane without and
with induced pressure. We measured typical maximum maximum sags around 2 mm which is
in reasonable agreement with expectations.

5.3. Ray tracing analysis of reflected light distributions: quadratic windows

Next, we discuss the reflection of incident parallel (sun) light from such deformed window
panes. For simplicity we start with quadratic windows. If the sag would show spherical
symmetry around the axis through the center, the window would represent a concave or
convex mirror. Untreated glass surrounded by air has a reflectivity depending on the glass
optical constants, e.g. a single pane window of index of refraction n= 1.5 typically reflects
about 8% of the incident light for normal incidence (due to the two air-glass-boundaries) [10].
For parabolically shaped surfaces, all light would be focused into a single focal point for
proper image distance, i.e. the focal length f. For spherically shaped mirror surfaces, only the
paraxial rays will be focused into the focal point, light which is incident more distant from the
optical axis will form a caustic [6]. Rectangular windows differ from usual mirrors in optics in
two aspects: first the surface even of the paraxial rays will neither be spherical nor parabolic.

Second, the diagonal symmetry of the tilts (figures 12, 13) suggests that the focused light
should also show this diagonal symmetry as was observed in figures 1 and 5. In addition,
what can actually be observed depends on the distance between window and projection wall.
If it equals the focal length, one should observe a nice focus, surrounded by some structures
with diagonal symmetry. If it is much larger or smaller, the focus is washed out.

Some first exemplary optical simulations [14] by S Wennmacher (a physics teacher
student for his final exam work, supervised by H J S, one of the authors) were qualitatively
supporting expectations. Here more quantitative simulations using Excel spread sheets will
be discussed.

Figure 14 shows some typical results as point scatter plots for reflected light for a well
defined distance d= 50 m of the projection screen for a quadratic window (1 m2) acting as
concave mirror and a maximum sag of 1 mm. The optical reflections are due to two different
contributions from the concavely shaped pane (light focusing) and the convexly shaped pane
(defocussing). Since the panes are only a few mm thick, deformations are small and we are
dealing with normal incidence light, we only consider the effect of a single reflection from
each pane, i.e. we assume that the second reflection from the back side of each pane more or
less coincides with those from the front sides and just changes the amount of radiation but not
the light distribution on the projection screen.

Figures 14(a) and (c) separately depict the contributions from the concavely and con-
vexly formed panes. For size comparison, the broken line square gives the dimensions of the
reflecting window. The different scale is due to different effects of focusing and defocussing.
These shape plots of the light distribution define the contours which are observed with the
naked eye. Figure 14(b) shows an irradiance plot for figure 14(a), which nicely shows the
strong enhancement within the focal area which could be measured with a power meter.
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Most of the following plots will be of the type shown in figure 14(d), which are overlay
plots of both panes. In this case, for the quadratic window, one sees that both light con-
tributions have diagonal symmetry as expected.

Figure 15 shows a comparison for light distribution plots as a function of distance for the
same quadratic window. One can see that for distances around 50 to 70 m a region with large
irradiance (focal area) evolves. In the present case a distance of around 62.5 m was giving
more or less the highest irradiances. The outer shape resembles a square for large distances
which turns into a rounded square or circle for small distances. These plots also qualitatively
explain what happens if the maximum deformation changes. An increase in maximum
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Figure 14. Overview of caustic features upon normal incidence due to a 1 m2 quadratic
window (200 × 200 area elements) with maximum deformation of 1 mm (correspond-
ing to Δp≈ 1.9 hPa) in a distance of 50 m. (a) Shape due to concavely formed pane; (b)
irradiance plot of the data for (a) with false colour scale; (c) shape due to convexly
formed pane; (d) superposition of concave and convex contributions, corresponding to
observations. Note the change of scale which is −500 mm to 500 mm each side in (a)
and (b) and −1000 mm to 1000 mm each side in (c) and (d). The broken line square
shows the size of the original window panes for size comparison.



deformation directly translates into an increase in the value of the partial derivatives which
define the reflected light spot. Therefore, an increase of maximum sag has the same effect as
an increase of distance.

In order to better understand the physics behind these images, i.e. which regions on the
window panes are responsible for specific features within the caustic, figure 16 shows some
contour lines due to reflected light from area elements along vertical lines of the deformed
window. Figure 16(c) depicts the position of the chosen vertical line elements on the
deformed windows. Figure 16(a) shows results side by side with half of the full projection
image (figures 14(a), (c)) for a concavely deformed, i.e. focusing window pane, figure 16(b)
depicts the same for a convexly, i.e. defocusing pane.
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Figure 15. Light distribution plots from a 1 m2 quadratic window on a projection screen
in distances from 25 m via 50 m and 62.5 m to 200 m (normal incidence, maximum
deformation 1 mm). Please note the scale change for 200 m.



5.4. Ray tracing analysis of reflected light distributions: rectangular windows

Many windows in buildings are rectangular with aspect ratios varying around 1.4 and 1.5.
Since the windows responsible for the observations shown in figures 2 and 5–8 were due to
k= 1.4, we present respective theoretical simulation results.

Figure 17 depicts results for a window of 2.18 m2 (1.25 m× 1.74 m) for 0.9 mm sag,
corresponding to a pressure difference of around 0.4 hPa. In general, the reflected light
distributions have similar features than those of the quadratic window, the main difference
being that the focal features are stretched along the vertical direction. The concave, focusing
pane gives rise to an extended cross-like structure whereas the convex defocusing pane yields
the outer rhombic-like feature.
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Figure 16. (a), (b) Plots of the position of reflected light due to vertical lines at the
surface of a quadratic 1 m2 window with maximum sag of 1 mm at a projection
distance 50 m for a concavely (a) and convexly (b) deformed pane. The quadratic
window extended from −500 mm to +500 mm. The seven arbitrarily chosen lines (c)
from left to right: −500 mm; −375 mm; −250 mm; −125 mm; −65 mm; −40 mm; 0 mm
(center line).



5.5. Comparison to observations

Figure 18 shows some examples of observed features which were qualitatively modeled
(inserts) with appropriate parameters for pressure difference, elastic constants and dimensions
of the windows (after [7]). In principle, each concavely or convexly shaped pane would lead
to reflection from both the front and the back interface. However, since near normal incidence
was studied, the second reflection would only lead to a very small smearing out of the
features. Therefore, for simplicity only a single reflection from each pane was treated.
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Figure 17. Overview of superimposed reflected light distributions from convex as well
as concave panes upon normal incidence due to a rectangular window (k = 1.4,
200 × 280 area elements) with maximum deformation of around 0.9 mm (correspond-
ing to Δp≈ 0.4 hPa) as a function of distance of a projection screen. Distances vary
from 25 m via 50 m and 75 m to 100 m. Note the change of scale which is −1000 mm
to 1000 mm each side in (a) and (b), −1200 to 1200 in (c) and −2000 mm to 2000 mm
each side in (d). The black rectangle shows the size of the original window panes for
size comparison.
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Figure 18. Examples of optical features upon reflection from the same curved window
panes, observed at different days with changing atmospheric pressure (after [7]). The
windows had a height versus width ratio of 3:2, i.e. k = 1.5. In (a) the pressure
difference was largest, in (b) intermediate and in (c) lowest. The inserts show results of
exemplary theoretical simulations, while varying the pressure difference. Even in (a)
the condition with distance close to the focal distance was not yet reached.

Figure 19. Comparison of two observed reflection features (a), (b) of a rectangular
window (height versus width ratio k≈ 1.4) with a simulation result (c). The inner cross-
like feature as well as the outer rhombic feature are clearly reproduced.



The comparison in figure 18 is qualitative only. Quantitative comparison was not done
since the actual pressure difference was not known. In principle the pressure difference could
be estimated if it would be easily possible to vary the projection distance (which is not the
case) such that the focal distance could be estimated and therefrom the expected theoretical
pressure difference (see section 6).

Figure 19 depicts a comparison between two observed features from a rectangular
window with k = 1.4 (figures 19(a), (b)) with the quantitative theoretical approach from above
(figure 19(c)). Figure 19(c) corresponds to figure 17(c) but represents the respective expected
irradiance distribution. The inner cross-like feature as well as the outer rhombic feature have
the highest irradiance and their geometric forms nicely correlate to observations, also
regarding the fact, that the outer rhombus has maximum strength at the center of the lines and
is lowest for the four corners.

Typical measurement distances of observations were around 30 to 40 m and quite good
agreement can be found. From equations (1) and (5) it is obvious, that each result in figure 17
holds for a number determined by the product of pressure difference and distance. This means
that, e.g., the result for d= 75 m and Δp= 0.4 hPa equals the one for d= 37.5 m and
Δp= 0.8 hPa. From a comparison between observation and simulations, we expect that for the
simulation conditions, with Δp= 0.4 hPa, distances between, say, 60 to 80 m are in good
agreement. Therefore we expect typical pressure differences of the order of 0.5 to 1 hPa to
cause the phenomenon. Before discussing whether such numbers are reasonable from
meteorological changes, we first briefly discuss of how to find focal distances from the model.

5.6. Estimating focal lengths from window curvatures: presence of astigmatism

Once the curvature of the window pane is known theoretically, one may easily estimate focal
lengths. This can be done first by using the ray tracing program and searching for maximum
irradiance in plots like figure 15. Second, a rough estimate may use an average tilt angle and
apply the law of reflection. Third, as will be done below, one may use second order fit
functions, i.e. parabolas, to approximate theoretical deformations.

For rectangular or quadratic windows with given maximum sag, the tilts for various
directions differ. Therefore, the sag as function of position along various lines along the
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Figure 20. Sag along vertical (a) and diagonal line (b) passing through the center of a
quadratic window (compare figure 12) with 1 mm maximum sag. The plotted straight
lines resemble polynomial fits of 2nd order for the vertical and 4th order for the
diagonal line.



window differ and one should also expect a change of the respective focal distances. As an
example figure 20 depicts vertical and diagonal line plots through the center for the sag of
quadratic windows (some points marked) together with polynomial fits (solid lines).

The vertical line shows maximum tilt at the edge and can be very accurately fitted with a
parabola. In contrast, the diagonal line—due to the model assumptions—has fixed zero sag at
the corners. Therefore the best fit is a 4th order polynomial. However, assuming that most
prominent features of the reflected light are due to regions with large tilt, it makes sense to
also fit just the central part. This may also be approximated by a second order polynomial.

As an example for the order of magnitude of theoretical focal distances, we used the
equation for the vertical line parabola for a maximum sag of 1 mm for a quadratic window. Its
parabolic line fit (figure 20(a)) is approximately given by

= ⋅ − +( )y x x a
4

1000
(6 )2

where y is the sag in m and x the position along the window in m. Obviously the number 4
from the fit is directly proportional to the sag. Transforming this parabola into its normal form

= ⋅y x b
4

1000
(6 )2

and knowing from mathematics that a parabola normal form can be written as

= ⋅ =y
p

x f
p

c
1

2
with

2
(6 )2

we find 4/1000 m−1 = 1/(2p), i.e. p= 125 m and we can immediately locate the focal point F in
the focal distance f≈ 62,5 m. Such a distance is very reasonable for actual observations.

Fitting the center part of the diagonal line for the quadratic window, we do however, find
a focal length which (depending on the chosen center section for the fit) can be up to a factor
1.7 smaller, i.e. we would find focal lengths of only 37 m or so. This argument easily explains
why window reflections should always have some astigmatism, i.e. there will never be a
single perfect focus but always regions around some critical focal distance with a con-
centration of light in small areas, leading to large irradiances.

Finally, equation (6c) also explains how focal distance changes with sag. A larger sag
value (a number larger than the 4 from above) will decrease p and according to equation (6c)
the focal length f.

6. Window deformations due to ambient pressure and temperature changes

The lab experiment of section 4 demonstrated the optical effect and allowed measurements of
pressure differences related to pane deformations. We now apply the theory for the pane
deformation from section 5 to the experimental model window. We used an acryl glass model
with a= b= 0.185 m, h= 3.5 mm and inner gap of 5 mm. According to tables for acryl glass,
Young’s modulus is around 3.0 to 3.3 GPa. Whatever value is chosen this is much lower than
the one for glass. Also the Poisson ratio is slightly higher, e.g. μacryl≈ 0.35. For
Eacryl = 3.2 GPa, the maximum sag should be around 0.037 mm hPa−1, giving around 0.9 mm
for Δp= 25 hPa. This is already of the same order as the experimentally observed value of
0.5 mm (figure 11). The difference is partly due to uncertainties in the parameters for acryl
glass, the main effect is, however, probably due to the chosen boundary condition of the
theory. Equations (1), (2) were derived for the assumption that the pane is fixed at the
boundary lines of the rectangular perimeter. Therefore, although there were no deformations

Eur. J. Phys. 35 (2014) 045023 M Vollmer et al

20



at the perimeter, tilts were possible. In reality, the windows are attached to the window frame
in a rather stiff way. This decreases the perimeter tilts and therefore also change the theo-
retical deformations all across the window. A respective analysis is way beyond the scope of
this article.

Nevertheless, the model experiments of section 4 showed very close agreement of the
caustic features due to real windows. However, clever students may detect a difference to the
daily life observations, i.e. that the situation differs appreciably from real double pane win-
dows. In the (isothermal) experiment, pressure within the panes was changed with regard to
the outside atmospheric pressure by changing the number of gas molecules in the inner
volume using a syringe or the vacuum or pressure pump and the measured inner pressure was
directly giving the pressure difference between inside and outside. In contrast, for real
windows, the inner volume is air tight, i.e. the inside amount of air molecules is fixed and
deformations are due to changes of ambient pressure and/or temperature with regard to
conditions during the manufacturing.

6.1. Inner gas treated as ideal gas upon pressure and temperature changes

We first assume that filling with gas and sealing of the window was taking place at initial
pressure p0 and temperature T0. As a consequence, if ambient pressure and temperature are
equal to p0 and T0, the panes are not deformed and the inner cuboid shaped volume V0 is
defined by the window area A and the inner pane separation d (e.g. left scheme of figure 3). If
external conditions change, the window panes are deformed either inward (e.g. right scheme
of figure 3) or outward. We assume that external pressure is given by pext = p0 +Δpamb and
temperature T= T0 +ΔTamb. As a consequence, the window deforms. Due to the elastic
constant of glass it deforms until an equilibrium is established with a pressure difference Δp
between inside and outside which usually differs appreciably from Δpamb (see below).

For given pressure difference Δp, the inner volume change ΔV between the two panes is
calculated by integrating the sag across the window area A, which gives [11]:

Δ Δ= ⋅( )V C k p2 (7)

with

σ

π
Θ=

−
⋅ ⋅

( )
( ) ( )C k

E

A

h
k

192 1
(8)

2

6

3

3

Θ (k) is a function [11] which only depends on the aspect ratio of the window. Table 2 gives
respective values as well as values for C(k), again for windows with areas of 1 m2 and 2 m2,
h= 5 mm, E= 70 GPa and σ= 0.20.

For example, a pressure difference of 1 hPa would result in a swept out volume of a
single quadratic 1 m2 window pane CΔp= 2.24 × 10−4 m3.
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Table 2. Function Θ (k) and prefactor C of swept out volume of a single pane for
windows of a given area and aspect ratio k.

k = 1 k = 1.4 k= 1.5 k = 2

Θ (k) 0.1023 0.0917 0.0874 0.0662
ΔV
(1 m2)

2.24 × 10−6 m3 Pa−1 2.00 × 10−6 m3 Pa−1 1.91 × 10−6 m3 Pa−1 1.45 × 10−6 m3 Pa−1

ΔV
(2 m2)

1.79 × 10−5 m3 Pa−1 1.61 × 10−5 m3 Pa−1 1.53 × 10−5 m3 Pa−1 1.16 × 10−5 m3 Pa−1



For the following example, we assume initial conditions as follows: p0 = 1000 hPa,
T0 = 300 K, and V0 = 15 × 10

−3 m3 (for an inner spacing of 15 mm). Assuming the ideal gas
law, we find upon external changes Δpamb and ΔTamb while keeping N constant, and assuming
that the glass panes and inner gas will have ambient temperature.

Δ Δ Δ

Δ
⋅

=
+ + ⋅ +

+
( ) ( )p V

T

p p p V V

T T
. (9)0 0

0

0 amb 0

0 gas

Here, the inner pressure is written as external pressure pext = p0 +Δpamb plus the actual
pressure difference Δp between inside and outside. ΔTgas =ΔTgas(ΔTamb) describes how the
inner gas temperature depends on the ambient temperature difference ΔTamb. This will be
discussed below. Inserting equation (7) into equation (9) and solving for Δp we find:

Δ
Δ Δ

Δ Δ
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p T p T V
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We can safely assume that Δp in the denominator is smaller than Δpamb and both are
much smaller than p0. Since 2C(k) p0 is at least an order of magnitude larger than V0 (e.g.
2Cp0 = 0.45 m

3≈ 30 ·V0 for a 1 m2 square window) we have:

Δ
Δ Δ

≈
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6.2. Solutions for isothermal, isobaric and general case

6.2.1. Isobaric. Pressure and temperature changes may be treated separately first, before
discussing their combined action.

For isobaric conditions, i.e. Δpamb = 0, equation (11) can be simplified to give

Δ
Δ

≈ ⋅p
T

T

V

C2
. (12)gas

0

0

The temperature difference ΔTgas refers to the one of the gas in the sealed inner spacing
between the panes. This is related to a temperature difference ΔTamb between inside and
outside of the building which is usually easy to measure. Let us assume that the typical inside
temperature Tin = 20 °C is the temperature at which the inner gas volume was sealed. A very
dramatic T change would occur in winter for outside temperatures below freezing, e.g. for
Tout =−10 °C, i.e. ΔTamb = 30 K. The temperature change within the window of a double pane
window for this temperature gradient was calculated, assuming glass thickness of 4 mm with
thermal conductivity of 1W(m ·K)−1, inner air spacing of 10 mm with thermal conductivity
of 0.026W(m ·K)−1, and standard heat transfer coefficients of αin = 8Wm−2K−1 for the inside
and αout = 25Wm−2K−1 for the outside surface (section 4.3.4 in [15]). In this case the two
glass surfaces, which are the boundaries of the inner gas, had temperatures of 13.3 °C and
13.1 °C respectively, which resembles a ΔTgas of only around 7 K. The fact that ΔTgas is much
smaller than ΔTamb was of course expected since thermal insulation was the main motivation
for using such windows. It is probably safe to assume, that if ΔTamb is given, the respective
ΔTgas is at most one quarter of it. Using ΔTamb = 30 K, i.e. ΔTgas = 7 K and V0/(2C)≈ 67 hPa
(1 m2 quadratic window), we find Δp≈ 1.6 hPa (similarly the value is around 0.22 hPa for a
2 m2 rectangular window with k= 1.4). Since ΔTgas will have the same sign as ΔTamb, the
shape of the inner gas volume will be convex for ΔTamb > 0 and concave for ΔTamb < 0.
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These pressure differences of the order of 1 hPa are in agreement with expectations
from above.

6.2.2. Isothermal. Next we assume isothermal conditions between inside and outside, i.e.
ΔTamb = 0 which also means ΔTgas = 0. Similar to the arguments from above, equation (11) can
now be simplified to give

Δ
Δ

≈ − ⋅p
V

C

p

p2
. (13)0 amb

0

Using Δpamb = 20 hPa, and V0/(2C)≈ 67 hPa (1 m2 quadratic window), we find
Δp≈ −1.34 hPa (or similarly 0.19 hPa for rectangular 2 m2 window with k= 1.4). Obviously
though maybe unexpected at first naïve glance at the problem, the change of internal gas
pressure is more than a magnitude smaller than the ambient pressure difference. The minus
sign is related to the shape of the inner gas volume: it will be concave for Δpamb > 0 (i.e.
Δp< 0, internal pressure smaller than ambient pressure) and convex for Δpamb < 0 (i.e. Δp> 0,
internal pressure larger than ambient pressure).

The physics reason for the actual pressure difference being much smaller than the
ambient pressure change is simple. If an ambient pressure change of e.g. +30 hPa would
transfer into an actual pressure change of the same magnitude (e.g. more than 10 hPa), the
deformations (table 1) would be comparable to the inner spacing. As a consequence, the
induced volume change would be comparable to the total inner volume. Treating such an
induced volume change as isothermal, the resulting inner pressure change would be very
large, probably larger than the induced external pressure which contradicts the argument.
Obviously, the interplay between external pressure and therefrom induced inner pressure rise
automatically leads to a much lower actual pressure difference.

6.2.3. General case. Comparing results from equations (12) and (13), we also see that for
reasonable changes of ambient temperature and pressure, the respective changes of internal
gas pressures are of the same order of magnitude.

Allowing both temperature and pressure to change simultaneously from the predefined
manufacturing values, we now discuss equation (11) for sun shine conditions, which are
needed to observe the optical phenomena due to the deformations. Typical weather conditions
with sun shine in Western European summertime are high pressure and high temperatures
(Δpamb > 0 and Tamb > 0). In wintertime, sunny and cold periods are usually also characterized
by high pressure systems (ΔTamb < 0 and Δpamb > 0), usually with even higher pressure than in
summer, due to the much colder air. In contrast, mild winters are usually associated with low
pressure systems and rainy weather which does not allow observations of the phenomenon. In
spring and fall, conditions can vary. For the dates of our observations, e.g. the 25th of
November 2011 a high pressure system resulted in more than 1030 hPa at our location and
outside temperatures when photos were recorded were around 5 °C.

If both temperature and pressure differences will have the same sign, their effects are
counteracting and the overall pressure difference can be small. However, whenever high
pressure is associated with low temperature or vice versa, both effects add up and the overall
deformation will be large.

Using equation (11) with appropriately analyzed ΔTgas(ΔTamb) will give the pressure
differences which are responsible for the deformation. Our observations (figures 2, 5–7) were
from 25th of November 2011 for temperatures between 3 °C and 5 °C and very high pressure
above 1030 hPa. The respective pressure changes Δp due to temperature and ambient pressure
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changes add up to yield around Δptot≈ 2.9 hPa (1 m2 quadratic window) or 0.4 hPa (2 m2

window with k= 1.4).
These values are very realistic and would give rise to maximum sags of the order of

1 mm for windows (table 1).
So far, we have assumed a certain manufacturing pressure of, say, 1000 hPa. Now one

can easily imagine that the window manufacturing occurs at a certain elevation above sea
level, but the windows are sold all over the country, i.e. also at locations with different
elevation. A quick survey of window manufacturers in Germany revealed quite a few
businesses producing at heights well between near sea level to about 500 m. If sold to regions
with different heights, the height difference can give rise to pressure difference offsets, i.e.
respective windows may show deformations all the time.

Assuming that production would take place at sea level with average pressure of
1000 hPa, one can estimate the pressure change with height change h for an isothermal
atmosphere from the barometric formula

= −( ) ( ) { }p h p h H0 exp (14)

where H is the scaling height of about 8000 m.
Some typical values for such height related pressure differences Δpheight are

Δp100m = 12.4 hPa, Δp200m = 24.7 hPa, Δp300m = 36.8 hPa, or Δp500m = 60.6 hPa. These values
are comparable to naturally occurring pressure differences due to normal weather changes of
about +−30 hPa with regard to average pressure.

Finally, we mention that the fact that windows do indeed show the observed optical
effects even after years is an indication that the inner gas volume is indeed quite well sealed.

7. Thermal effects due to the reflected light distributions

A few years ago, there were many news reports (e.g. [9]) dealing with sunlight reflections of a
Las Vegas skyscraper with very pronounced thermal effects [6]. The respective irradiances
were much higher than from an individual window (many windows contributed simulta-
neously) nevertheless the news reports also mentioned thermal effects due to individual
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Figure 21. Enlarged section of light focus due to reflected sunlight from a double pane
window on the wall of a neighbour building (a) and respective surface temperature
distribution (b). The temperature increased by about 2 K due to the irradiance, the spot
moving from right to left due to the changing position of the Sun.



windows. In particular it was argued that the decorative vinyl outer coating of some houses in
the US was damaged by focused light from double pane windows of nearby houses. In order
to test this hypothesis we measured the irradiance within focal areas of the reflection caustics
and also studied associated thermal effects on the wall of a neighbour building.

The caustics with the form of brightly illuminated focal areas with the geometry of the
letter X as those observed in figures 1 and 5–7 consist of focused light, i.e. the irradiance at the
wall surface is larger than the one at adjacent wall sections. Therefore, thermal effects are to
be expected. Figure 21(a) depicts an enlarged version of such a caustic feature observed from
close distance. The window causing this feature was in a distance of about 30 m having a size
of 1.25 × 1.74 m2. On the wall, the width of the focal area corresponded to around 24 cm
(about the width of a single brick) with a vertical extension of about 65 cm (height of about
eight bricks).

Whenever light from a large area is focused to a much smaller area, the irradiance
increases with regard to the adjacent wall regions, which lie in shadow and are only illu-
minated by diffusely scattered sunlight. As a result the focal area equilibrium temperature will
increase. The effect due to a single window focusing sunlight via reflection was analyzed with
infrared thermal imaging [15, 16]. A LW IR camera, operating in the wavelength range from
8 to 14 μm, pointed at the wall area. The result is shown in figure 21(b). The temperature
increase at the center of the focal area amounted to about 2 K with regard to the shadow
regions of the wall. The situation changes quite rapidly: the reflection was at a distance of
about 30 m from the window. Within one minute the Sun moved by about (1/4)° leading to a
change of (1/2)° of the reflected beam. This corresponds to a distance of about 25 cm on the
wall, covered within one minute. Therefore, transient effects of heat conduction tend to
decrease the temperature increase.

Obviously, the maximum observable temperature rises and the respective time constants
and transient behavior depend on the irradiance which is available, the ability to absorb sun
radiation of the wall, the heat capacity and heat conductivity of the wall as well as its ability to
loose energy via conduction, convection and radiation [15].

A very rough estimate can help to understand the effect. The 2.2 m2 window has about
4% reflectivity from each surface. Two surfaces from a pane contribute to the focusing (the
remaining two for defocusing), which means that for a sunny day of, say, 1000Wm−2 and
normal incidence at sea level, about 8% will be reflected towards the focus. The sun elevation
was about 40° which reduces the incident power for vertically oriented windows to about
77%, giving a total of the reflected radiation of 0.08 · 0.77 · 1000Wm−2 · 2.2 m2≈ 135W.
This radiation is illuminating the focal area of about 0.25 · 0.65 m2 = 0.16 m2. Taking into
account the areas of adjacent optical features around the X, we assume an area of, say 0.3 m2

to which the radiation is focused. This leads to an irradiance of 135W/0.3 m2≈ 450Wm−2

which—as expected from the only 2 K temperature rise—is still much less than if the wall
would be in full sunlight.

The argument was checked by measuring irradiances at a sunny and clear blue sky day.
The direct irradiance was about 1000Wm−2, the diffuse irradiance in the shadow region
outside of the reflected light focus was ≈150Wm−2 and the maximum irradiance in the focus
was up to 650Wm−2. Neglecting the diffusely scattered light contribution, the increase of
irradiance within the focus of about 500Wm−2 is in agreement with the estimate of
450Wm−2. For one window with very good focus, i.e. small focal area, we could even reach
900Wm−2, i.e. almost the direct sun irradiance!

The amount of temperature rise due to this irradiance then depends on the properties of
the object which is irradiated. One may expect that thick solid state materials such as the
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bricks of the wall will only warm up slowly due to their large heat capacity. For an irradiance
of 500Wm−2, we would expect 80W within the focal area A= 0.16 m2. Due to the Sun
movement, each part of the surface is irradiated for about 1 min, i.e. 60 s, giving an available
energy for absorption of 4800 J. Accounting for scattering losses we assume that a maximum
of about 4000 J will be absorbed. Bricks—being stones—usually have a thermal conductivity
which is at least a factor of 10 higher than the one from dry wood. Assuming a thickness of
5 mm we estimate a heated volume of around 8 × 10−4 m3 and a mass to be heated of about
1.6 kg. Together with a specific heat of around 1 kJ (kg K)−1, a temperature rise of about 2.5 K
is to be expected. Considering all assumptions in this estimate, the rough agreement with the
observed 2 K is satisfactory.

Thinner objects with poor thermal contact to the underlying wall would, however,
experience a much faster as well as stronger heating. This argument is also supported by
experiments where thin sheets of black paper or plastic foil were in the (well defined) sunlight
focus of a cylindrical mirror of around 0.2 m2 area and were heating up well above 100 °C
within a few seconds. Even 1.5 cm thick wooden boards heated up above 100 °C within
several minutes [6]. Hence, thin plastic sheets on top of a wall within the focal areas of
reflection from double pane windows could heat up better. Therefore, damage on vinyl
coatings of houses due to the caustics of double pane windows from neighbour buildings [9]
may in principle be possible. However, this would need normal irradiances above
1000Wm−2 since otherwise the irradiance of the unobscured sun could already cause a
damage. Such high irradiances may be possible for architectural glass with higher reflectiv-
ities than the one of uncoated glass panes.

8. Conclusions

Double pane windows show interesting every day optical phenomena in reflected sunlight.
They are due to elastic deformations of the panes which lead to concave or convex mirror-like
shapes whenever a pressure difference exists between inside pressure which was defined
during the production process of the air tight window and outside ambient pressure. Some-
times such windows can very effectively focus light if the distance to a projection screen such
as a neighbouring house wall equals the focal distance of the curved mirror-like window. The
increased irradiance in focal areas leads to thermal effects which can be detected using
infrared thermal imaging. The pressure differences between inside and outside, which are
responsible for the deformations can be guessed from an ideal gas model and all optical
features can be understood using a simple ray tracing approach. For classroom use, the effect
may in addition be demonstrated with miniature model windows.

Appendix: Light reflection at normal incidence from arbitrarily deformed
windows

We use the most straightforward approach to follow reflected light rays with vector geometry.
Once the sag W(x,y) of the window is known (or computed from equation (1)), all other
computations can be done with a spreadsheet program such as Excel. The calculation holds
for normal incidence onto the undisturbed window. The extension for arbitrary incidence
is possible.

(a) Characterization of surface and light rays
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Assuming the incident light to propagate along the z-axis and the undisturbed window to
be in the xy-plane, the starting point is the deformation function, i.e. a sag W(x,y) of the
reflecting surface. The total window area of size Lx and Ly is approximated by small area
elements dx*dy with Lx=Nx*dx and Ly=Ny*dx. For example, for Lx= Ly= 1 m we used
Nx=Ny= 200, giving 40 000 area elements of (5 mm)2.

(b) Calculating the orientation of area elements

The sag W(x,y) is used to compute the slope of the area elements in x and y direction
(figure A1):
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(c) Calculation of angle of incidence

The incident light propagation direction is given by the normalized wave vector
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calculated from the scalar product φ− ⃗ ⋅ ⃗ =k n cos to give
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We note that φ is usually a very small angle < 1° for the window problem since the sag is
much smaller than the window dimension.
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Figure A1. Section of the (xz)-plane, illustrating the partial derivative of sag W(x,y)
versus distance along the x axis.



(d) Calculation of position of reflected light on a projection screen

Figure A2(a) schematically depicts the geometry. Incident light (direction characterized

by ⃗k ) impinges onto the deformed surface at point W(xwin, ywin, zwin). From each area element

it is reflected in the direction ⃗krefl according to the law of reflection. Its interception with a
projection plane, located in a distance d= zscreen from the reflecting window defines the
projection spot P(xrefl,yrefl). Figure A2(b) depicts the reflection process in term of the relevant

unit vectors ⃗k and ⃗n . Using the known angle (equation (A3)), we define the length C of vector
⃗kc as

= ⃗ = ´ + ´ +C k W W 1 (A4)c x y
2 2

such that the deflection vector Δ ⃗ is perpendicular to ⃗n .

Therefore the reflected wave vector is given by Δ⃗ = − ⃗ + ⃗k k 2l cref . Using Δ ⃗ = ⃗ + ⃗k nc we
find
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The problem now consists in finding the interception of the straight line from the window
in direction of the reflected light with the projection plane, i.e. we need to solve
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The fixed distance, i.e. the parameter zscreen gives λ and therefore the x and y components.
Using the approximation that the square root is essentially unity, i.e. C≈ 1, we find
λ≈ (zscreen− zwin) = d which finally gives
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Figure A2. (a) Overview of reflection geometry; (b) directions of unit wave vector ⃗k ,

unit normal vector ⃗n , respective angle φ as well as magnified vector ⃗kc and ⃗krefl such

that deflection vector Δ ⃗ is perpendicular to ⃗n .
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Due to the sign change of the partial derivatives when changing from concave to convex
mirrors, these equations are valid for either geometry.
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